

Research

Anomaly hotSpots of Agricultural Production (ASAP)

https://agricultural-productionhotspots.ec.europa.eu/index.php

Hervé Kerdiles EC-JRC Food Security Unit D5

Major drought impact on cereal and livestock production in Southern Africa

ASAP information

ASAP - Anomaly Hotspots of Agricultural Production

 Home
 Country Assessments
 Seasonal Forecast
 Warning Explorer
 High Resolution Viewer
 Download
 Info

 European Commission > EU Science HUB > ASAP > Home

3 main "platforms" or information levels

ASAP hotspot assessment April 2023 (updated on //2023-05-08)

Information level	Information provided	Targeted audience
Country assessment	Monthly summary for 81 countries	Decision makers, policy analysts
Region level with Warning Explorer	Explore meteo & RS (low resolution) indicators & automatic warnings at region level every 10 days	Agricultural analysts
Field level with High Resolution Viewer	Explore field level with 10m Sentinel imagery	Agricultural analysts with RS knowledge

+ Seasonal forecast of rainfall (monthly timestep for next 6 months)

Share of active area by zocore range per indicator

Warnings map

Info level 2: Warning Explorer

Explore meteo & biomass indicators (@ 1 km to 0.25 deg) at province level

(cropland / rangeland); analyze automatic warnings assigned by system to decide if country should be classified as hotspot

Indicators & warnings generated automatically every 10 days at province level (not crop specific, mean phenology)

Mainly for agriculture analysts

LEGEND

Warnings

Not analyzed

No warning

Not active

Biomass

Land cover

0-20%

20-40%

40 - 60%

60 - 80%

80 - 100%

Water balance

Water balance + biomass

End of season biomass

E.

Info level 2: Warning Explorer

Explore meteo & biomass indicators (@ 1 km to 0.25 deg) at province level; analyze automatic warnings e.g. to decide if country should be classified as hotspot

Indicators & warnings generated automatically every 10 days at province level

Info level 3: High Resolution Viewer

Tool to zoom at field level (10 m resolution) anywhere on the globe to compare 2 dates Allows detecting poor biomass, flooding, burning, clearing, snow presence etc...

Field level monitoring (crop specific) with global coverage

New image every 5 days (for S2), 8 days (L8-L9), 12 days (S1)

⁷ Mainly for agriculture analysts with basic remote sensing knowledge

Info level 3: High Resolution Viewer

Select a point and obtain its S2, L8 & MODIS NDVI profile + small image chips

Can also compare S2 NDVI distributions on an area at 2 dates

Field level monitoring for any point on Earth

With revisit frequency of 5 days (S2), 8 days (L8) to 12 days (S1)

⁸ Mainly agriculture analysts with basic remote sensing knowledge

Drought monitoring at multiple scales – South Africa 02/2019

Extra info: surface water, Seasonal rainfall forecast

0.50 0.75

P(drier)

0.50 0.75

P(normal)

0.50 0.75

P(wetter)

High P of very

dry conditions

Other layers: cropland & rangeland masks, Bing aerial

ASAP adaptations to Regional Centres

ICPAC, March 2021 https://agriculturehotspots.icpac.net/, https://eahazardswatch.icpac.net/map/ea/

ASAP at Gaul 2 level

ASAP warnings (and indicators) are available at sub-natinonal level (GAUL 2) currently for 62 countries (to support the Integrated Food Security Phase Classification (IPC) analysis)

GAUL Level 0 0.5

1.5

Take home message

- Global, free and online access
- Easy access to EO data (in particular S2, S1, Landsat data) on the cloud
- Need crop analyst to check automatic warnings
- Limited adaptations for regional centres (ICPAC, OSS...)
- New functionalities depending on results of ongoing research projects e.g. collaboration with University of Valencia on yield forecasting at country level with Machine Learning

Feedback and suggestions welcome

Examples of analysis with ASAP

- Morocco 2022 & 2024 droughts (Chaouia 03/2022 vs 03/2021: <u>https://mars.jrc.ec.europa.eu/asap/s/d897dff7</u>)
- Tunisia 2023 drought (Siliana 04/2023 vs 04/2022: https://mars.jrc.ec.europa.eu/asap/s/09bae31e)
- Pakistan floods 2022 (Sindh end 08/2022 vs 08/2021 <u>https://mars.jrc.ec.europa.eu/asap/s/8acf2ae7</u> & end 09/2022 <u>https://mars.jrc.ec.europa.eu/asap/s/6eca661a</u>)
- Mozambique flood caused by Idai storm, March 2019 (<u>https://mars.jrc.ec.europa.eu/asap/s/63edae1d</u>)
- Some limitations with ASAP

Use of ASAP indicators

Country assessment page: identify main producing regions

Share of national cereal production by subnational units Evolution of wheat vield for Morocco over 2001 - 2022 13% 2.40 Donwload indicators (see **Download** tab) at Gaul 1 level to compare the current season with the previous ones (since 1991 or 2002) anipe ASAP - Anomaly Hotspots of Agricultural Production Source FAOSTAT **Country Assessments** High Resolution Viewer Download Info Home Seasonal Forecast Warning Explorer -- 2001 Cumulated rainfall MAR Chaouia - CHIRPS rainfall for all cropland 2002--- 2001-2002 100 MAR Chaouia - MODIS NDVI for all cropland --- 2003-2002-2003 2004 -- 2003-2004 -- 2005 2004-2005 400 1.7 2006 2005-2006 80 (mm) --- 2007 2006-2007 2008 2007-2008 1 300 1.6 ---- 2009 2008-2009 2010----- 2009-2010 60 ē ---- 2011 2010-2011 CHIRPS - 200 1.5 2012 ---- 2011-2012 ---- 2013 2012-2013 2022 2014-Rainfall ---- 2013-2014 40 cumulated 100 1.4 ---- 2015-2014-2015 2022 ---- 2016----- 2015-2016 2023-24 ---- 2017----- 2016-2017 LTA 1.3 --- 2018----- 2017-2018 20 - 2019-2018-2019 2024 2020-- 2019-2020 ____ 2021-1.2 2020-2021 2022 - 2021-2022 - 2023 28 32 34 36 10 12 14 16 2022-2023 18 -- LTA dekad - 2023-2024 -- STA -- LTA 00/01-22/23 ···· STA 18/19-22/23

Confirmation by HR Viewer: Morocco Chaouia 03/2022 vs 03/2021

Comparison Morocco Chaouia 03/2024 vs 03/2023

European Commission

Tunisia 2023 with ASAP indicators downloaded

2023 driest [Oct-Apr] season since 1991-1992

NB: Short Term Avg (STA) < Long Term Avg (LTA) season rainfall

WARNINGS [TN - Siliana, Crop, 2023/04/21]

Sindh End August 2022 vs 2021

Pakistan floods 2022

Start period: 2022-00-01 ind period: 2022-10-01 Start period comp.: 2021-Sep-0 End period comp.: 2021-10-01 Cloud coverage: 10% Layer: NDV/SWIR/R

> Only very large floods, with water remaining for several days/weeks, can be easily detected

Mozambique – Flood caused by Idai tropical storm, end 03/2019

Interest of SAR S1 data when floods occur during the rainy season

S1 data: VV Sigma0 at end March/mid March/early March in R/G/B https://mars.jrc.ec.europa.eu/asap/s/63edae1d

Monitoring single fields / crops with S2 data

Select single fields of arable crop e.g. on Google Earth imagery Download CSV file of NDVI data (Modis, S2) over n years (as from 2017) in STATS tab of HR Viewer

Example of Beja, TUN

Coordinate 9.44472,35.52904 🚳 Scale 1:6872

Failed crop in 2023

